JURNAL NASIONAL TEKNIK ELEKTRO DAN TEKNOLOGI INFORMASI: Feature Selection Klasifikasi Kategori Cerita Pendek Menggunakan Naïve Bayes dan Algoritme Genetika
Classification of short stories category based on age of the reader is still difficult. Therefore, a decision support system to classify the short stories category is needed. Naïve Bayes is one of methods suitable for short stories classification. However, Naïve Bayes has flaws in accuracy level,...
Main Author: | Oman Somantri, Mohammad Khambali |
---|---|
Format: | Jurnal |
Language: | Bahasa Indonesia |
Published: |
Teknik elektro UGM
2017
|
Subjects: | |
Online Access: |
http://oaipmh-jogjalib.umy.ac.idkatalog.php?opo=lihatDetilKatalog&id=82869 |
id |
oai:lib.umy.ac.id:82869 |
---|---|
recordtype |
oai_dc |
spelling |
oai:lib.umy.ac.id:828692021-06-16T13:11:06ZJURNAL NASIONAL TEKNIK ELEKTRO DAN TEKNOLOGI INFORMASI: Feature Selection Klasifikasi Kategori Cerita Pendek Menggunakan Naïve Bayes dan Algoritme GenetikaOman Somantri, Mohammad Khambali Classification of short stories category based on age of the reader is still difficult. Therefore, a decision support system to classify the short stories category is needed. Naïve Bayes is one of methods suitable for short stories classification. However, Naïve Bayes has flaws in accuracy level, and needs to be optimized. In this paper, Genetic algorithm is proposed to increase the level of accuracy. In this case, genetic algorithm is used for feature selection. The results show an increase in the level of accuracy produced. The accuracy increases from 78,59% to 84,29%. In conclusion, the application of genetic algorithm on Naïve Bayes in classifying the online short stories category can improve the accuracy. Teknik elektro UGM2017JurnalISBN:ISSN : 2301-4156JNTETI TAHUN VOL NO 2015 6 3 Bahasa Indonesiahttp://oaipmh-jogjalib.umy.ac.idkatalog.php?opo=lihatDetilKatalog&id=82869 |
institution |
Universitas Muhammadiyah Yogyakarta |
collection |
Perpustakaan Yogyakarta |
language |
Bahasa Indonesia |
topic |
|
spellingShingle |
Oman Somantri, Mohammad Khambali JURNAL NASIONAL TEKNIK ELEKTRO DAN TEKNOLOGI INFORMASI: Feature Selection Klasifikasi Kategori Cerita Pendek Menggunakan Naïve Bayes dan Algoritme Genetika |
description |
Classification of short stories category based on age of the reader is still difficult. Therefore, a decision support system to classify the short stories category is needed. Naïve Bayes is one of methods suitable for short stories classification. However, Naïve Bayes has flaws in accuracy level, and needs to be optimized. In this paper, Genetic algorithm is proposed to increase the level of accuracy. In this case, genetic algorithm is used for feature selection. The results show an increase in the level of accuracy produced. The accuracy increases from 78,59% to 84,29%. In conclusion, the application of genetic algorithm on Naïve Bayes in classifying the online short stories category can improve the accuracy.
|
format |
Jurnal |
author |
Oman Somantri, Mohammad Khambali |
author_sort |
Oman Somantri, Mohammad Khambali |
title |
JURNAL NASIONAL TEKNIK ELEKTRO DAN TEKNOLOGI INFORMASI: Feature Selection Klasifikasi Kategori Cerita Pendek Menggunakan Naïve Bayes dan Algoritme Genetika |
title_short |
JURNAL NASIONAL TEKNIK ELEKTRO DAN TEKNOLOGI INFORMASI: Feature Selection Klasifikasi Kategori Cerita Pendek Menggunakan Naïve Bayes dan Algoritme Genetika |
title_full |
JURNAL NASIONAL TEKNIK ELEKTRO DAN TEKNOLOGI INFORMASI: Feature Selection Klasifikasi Kategori Cerita Pendek Menggunakan Naïve Bayes dan Algoritme Genetika |
title_fullStr |
JURNAL NASIONAL TEKNIK ELEKTRO DAN TEKNOLOGI INFORMASI: Feature Selection Klasifikasi Kategori Cerita Pendek Menggunakan Naïve Bayes dan Algoritme Genetika |
title_full_unstemmed |
JURNAL NASIONAL TEKNIK ELEKTRO DAN TEKNOLOGI INFORMASI: Feature Selection Klasifikasi Kategori Cerita Pendek Menggunakan Naïve Bayes dan Algoritme Genetika |
title_sort |
jurnal nasional teknik elektro dan teknologi informasi: feature selection klasifikasi kategori cerita pendek menggunakan naïve bayes dan algoritme genetika |
publisher |
Teknik elektro UGM |
publishDate |
2017 |
url |
http://oaipmh-jogjalib.umy.ac.idkatalog.php?opo=lihatDetilKatalog&id=82869 |
isbn |
ISBN:ISSN : 2301-4156 |
callnumber-raw |
JNTETI TAHUN VOL NO 2015 6 3 |
callnumber-search |
JNTETI TAHUN VOL NO 2015 6 3 |
_version_ |
1702754778097909760 |
score |
14.79448 |