JURNAL NASIONAL TEKNIK ELEKTRO DAN TEKNOLOGI INFORMASI: Spatial Fuzzy C-means dan Rapid Region Merging untuk Pemisahan Sel Kanker Payudara

Segmentation and overlapped cells separation are important phases in microscopic image processing of breast cancer, because the accuracy of overlapped cells separation result determines the accuracy of breast cancer cell calculation. The amount of breast cancer cells is considered by doctor in deter...

Full description

Main Author: Desmin Tuwohingide, Chastine Fatichah
Format: Jurnal
Language: Bahasa Indonesia
Published: Teknik elektro UGM 2017
Subjects:
Online Access: http://library.umy.ac.id/katalog.php?opo=lihatDetilKatalog&id=82820
PINJAM
id umylibrary-82820
recordtype oai_dc
spelling umylibrary-828202019-06-14T19:03:15ZJURNAL NASIONAL TEKNIK ELEKTRO DAN TEKNOLOGI INFORMASI: Spatial Fuzzy C-means dan Rapid Region Merging untuk Pemisahan Sel Kanker PayudaraDesmin Tuwohingide, Chastine Fatichah Segmentation and overlapped cells separation are important phases in microscopic image processing of breast cancer, because the accuracy of overlapped cells separation result determines the accuracy of breast cancer cell calculation. The amount of breast cancer cells is considered by doctor in determining the action towards patients. Two of the most common topics discussed in previous studies are the problem of increasing the accuracy of overlapped cancer cell separation result by calculating the number of cancer cell and over-segmentation problem. Compared to watershed method, clustering method produces higher accuracy in separating overlapped cancer cells. In this paper, a combination of Spatial Fuzzy C-Means (SFCM) and Rapid Region Merging (RRM) method is proposed to separate the overlapped cells and handling the over-segmentation problem. The input image of overlapped cells separation phase is the result of breast cancer cell identification by Gram-Schmidt (GS) method, while the clustered cancer cells are overlapped cancer cells which are detected based on the area of geometric feature. 40 microscopic breast cancer cells image of benign and malignant type is used as the datasets. The average value of Mean Square Error (MSE) for cell identification is 0.07 and the average accuracy of overlapped cells separation using SFCM and RRM is 78.41%. Teknik elektro UGM2017JurnalISBN: ISSN : 2301-4156JNTETI TAHUN VOL NO 2017 6 1 Bahasa Indonesiahttp://library.umy.ac.id/katalog.php?opo=lihatDetilKatalog&id=82820
institution Universitas Muhammadiyah Yogyakarta
collection Perpustakaan Yogyakarta
language Bahasa Indonesia
topic
spellingShingle
Desmin Tuwohingide, Chastine Fatichah
JURNAL NASIONAL TEKNIK ELEKTRO DAN TEKNOLOGI INFORMASI: Spatial Fuzzy C-means dan Rapid Region Merging untuk Pemisahan Sel Kanker Payudara
description Segmentation and overlapped cells separation are important phases in microscopic image processing of breast cancer, because the accuracy of overlapped cells separation result determines the accuracy of breast cancer cell calculation. The amount of breast cancer cells is considered by doctor in determining the action towards patients. Two of the most common topics discussed in previous studies are the problem of increasing the accuracy of overlapped cancer cell separation result by calculating the number of cancer cell and over-segmentation problem. Compared to watershed method, clustering method produces higher accuracy in separating overlapped cancer cells. In this paper, a combination of Spatial Fuzzy C-Means (SFCM) and Rapid Region Merging (RRM) method is proposed to separate the overlapped cells and handling the over-segmentation problem. The input image of overlapped cells separation phase is the result of breast cancer cell identification by Gram-Schmidt (GS) method, while the clustered cancer cells are overlapped cancer cells which are detected based on the area of geometric feature. 40 microscopic breast cancer cells image of benign and malignant type is used as the datasets. The average value of Mean Square Error (MSE) for cell identification is 0.07 and the average accuracy of overlapped cells separation using SFCM and RRM is 78.41%.
format Jurnal
author Desmin Tuwohingide, Chastine Fatichah
author_sort Desmin Tuwohingide, Chastine Fatichah
title JURNAL NASIONAL TEKNIK ELEKTRO DAN TEKNOLOGI INFORMASI: Spatial Fuzzy C-means dan Rapid Region Merging untuk Pemisahan Sel Kanker Payudara
title_short JURNAL NASIONAL TEKNIK ELEKTRO DAN TEKNOLOGI INFORMASI: Spatial Fuzzy C-means dan Rapid Region Merging untuk Pemisahan Sel Kanker Payudara
title_full JURNAL NASIONAL TEKNIK ELEKTRO DAN TEKNOLOGI INFORMASI: Spatial Fuzzy C-means dan Rapid Region Merging untuk Pemisahan Sel Kanker Payudara
title_fullStr JURNAL NASIONAL TEKNIK ELEKTRO DAN TEKNOLOGI INFORMASI: Spatial Fuzzy C-means dan Rapid Region Merging untuk Pemisahan Sel Kanker Payudara
title_full_unstemmed JURNAL NASIONAL TEKNIK ELEKTRO DAN TEKNOLOGI INFORMASI: Spatial Fuzzy C-means dan Rapid Region Merging untuk Pemisahan Sel Kanker Payudara
title_sort jurnal nasional teknik elektro dan teknologi informasi: spatial fuzzy c-means dan rapid region merging untuk pemisahan sel kanker payudara
publisher Teknik elektro UGM
publishDate 2017
url http://library.umy.ac.id/katalog.php?opo=lihatDetilKatalog&id=82820
isbn ISBN: ISSN : 2301-4156
callnumber-raw JNTETI TAHUN VOL NO 2017 6 1
callnumber-search JNTETI TAHUN VOL NO 2017 6 1
_version_ 1636348216985255936
score 14.79448